loop invariant - traducción al árabe
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

loop invariant - traducción al árabe

INVARIANTS USED TO PROVE PROPERTIES OF LOOPS
Loop invarient; Loop-invariant code; Invariant Relation Theorem

loop invariant         
الحلقة الثابتة ـ ثبات الحلقة ـ ثبات الدائرة .
الحلقة الثابتة ـ ثبات الحلقة ـ ثبات الدائرة      

loop invariant

Law of causality         
  • Top: original billiard ball [[trajectory]].{{clear}}Middle: the ball emerges from the future at a different trajectory from the original, and collides with its past self, changing its trajectory.{{clear}}Bottom: the changed trajectory causes the ball to enter and exit the time machine in exactly the same way that changed its trajectory. The changed trajectory is its own cause, without an origin.
SEQUENCE OF EVENTS IN WHICH AN EVENT IS AMONG THE CAUSES OF ANOTHER EVENT, WHICH IN TURN IS AMONG THE CAUSES OF THE FIRST-MENTIONED EVENT
Causality loop; Causality Loop; Temporal causality loop; Causal loops; Creation paradox; Free lunch paradox; Ontological paradox; Bootstrap paradox; Bootstrap Paradox; Bootstrap paradox in fiction; Closed time loop; Predestination paradox; Law of Causality; Stable time loop
قاعدة السببية

Wikipedia

Loop invariant

In computer science, a loop invariant is a property of a program loop that is true before (and after) each iteration. It is a logical assertion, sometimes checked with a code assertion. Knowing its invariant(s) is essential in understanding the effect of a loop.

In formal program verification, particularly the Floyd-Hoare approach, loop invariants are expressed by formal predicate logic and used to prove properties of loops and by extension algorithms that employ loops (usually correctness properties). The loop invariants will be true on entry into a loop and following each iteration, so that on exit from the loop both the loop invariants and the loop termination condition can be guaranteed.

From a programming methodology viewpoint, the loop invariant can be viewed as a more abstract specification of the loop, which characterizes the deeper purpose of the loop beyond the details of this implementation. A survey article covers fundamental algorithms from many areas of computer science (searching, sorting, optimization, arithmetic etc.), characterizing each of them from the viewpoint of its invariant.

Because of the similarity of loops and recursive programs, proving partial correctness of loops with invariants is very similar to proving correctness of recursive programs via induction. In fact, the loop invariant is often the same as the inductive hypothesis to be proved for a recursive program equivalent to a given loop.